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Controlling unstable states in reaction-diffusion systems modeled by time series
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We introduce an algorithm for controlling unstable states of a spatiotemporal system modeled by a
time series. Control is achieved by adjusting an external parameter at the boundary. Our time series is
taken as the concentration from an experiment modeled by a reaction-diffusion system. It is shown that
unstable states can be maintained by performing fluctuations of the concentration at the boundaries,
while monitoring the dynamics from an interior spatial point.

PACS number(s): 05.45.+b

I. INTRODUCTION

Recent developments in the theory of nonlinear
dynamical systems have provided experimentalists with
new tools for exploring a wide range of aspects in the dy-
namics of real systems based on analyzing a single time
series. Methods such as embedding techniques allow one
to reconstruct the geometric model of the attractor and
recover all its essential properties from time series mea-
surements alone [1,2]. These methods have led to a con-
trol algorithm [known as the Ott-Grebogi-Yorke (OGY)
algorithm)] for stabilizing unstable orbits inside a chaotic
attractor [3] by applying small, carefully computed per-
turbations of an accessible system parameter.

Recently, the authors have designed an algorithm that
stabilizes unstable orbits and also tracks them as a func-
tion of a system parameter, thus extending the region
over which control can be achieved [4]. This algorithm
also applies to the time series itself and makes use of
embedding techniques. As the parameter is varied, con-
trol is maintained by a predictor-corrector technique.
The correction step incorporates the OGY technique or
any analogous form of linear control. The tracking algo-
rithm was implemented for maps as well as flows, and has
been successfully applied to experiments [5,6].

Tracking an unstable state of spatiotemporal processes
usually modeled by partial differential equations is also
possible and will constitute the subject of a future paper.
Tracking and control along unstable branches as a func-
tion of a parameter can lead to interesting new stable pat-
terns that do not form spontaneously in an experiment
[8], possibly leading to new experimentally realizable re-
gimes. As a first step in this direction, we present a
method of stabilizing an unstable state, which achieves
control spatially as well as temporally. The method is ap-
plied to a reaction-diffusion system that models pattern
formation in Couette flow reactors. This system exhibits
both small amplitude chaos and chaotic bursting [7].
Our goal is to stabilize an unstable periodic orbit when
the dynamics exhibits periodic bursting or chaotic
behavior.

In our method, the numerical solution of the system is
generated by a partial-differential-equation (PDE) solver,
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and control is applied by adjusting the boundary data re-
ferencing the dynamics at a fixed spatial point. We simu-
late the solution from an experiment where only the time
series at a spatial point is accessible.

II. MODEL

We consider the following one-dimensional reaction-
diffusion system:

du JI“u 1
—_— _+_ —_ R
3 Dax2 e[v f(u)]
3 a2 (la)
v v
E-—D—E;'z— u+ta, xe[o,l] s
subject to Dirichlet boundary conditions,
u(x =0,0)=uy, v(x=0,0)=v,,
(1b)
u(x=1,00=uy, vix=1,0)=v, .

The reaction term is a two-variable Van der Pol-like
equation, which accounts for the excitable bursting char-
acter of the dynamics. We remark that in the absence of
diffusion, chaotic solutions are not possible.

This is a formal model that does not completely meet
the experimental conditions and the requirements of
chemical kinetics laws in the Couette flow reactor. How-
ever, it reproduces most of the phenomena associated
with the observed front patterns in a chlorite-iodide reac-
tion [7]. The interaction of reaction and diffusion terms
gives rise to a variety of sustained patterns such as sta-
tionary periodic structures, nonlinear waves, or chaotic
spatiotemporal structures of large amplitude. In [9], nu-
merical evidence for chaotic intermittent bursting was re-
ported and analyzed taking the transport rate D as a bi-
furcation parameter. In our study, we noticed extreme
sensitivity of the solution with respect to the diffusion
coefficient D as well as with respect to a, which did not
allow the use of these parameters for control. (Changes
in the seventh significant digit were sufficient to change
the attractors.) Instead we looked at the solution as one
of the Dirichlet boundary conditions is varied and ob-
served transition to chaos via an intermittency route, the
details of which will be presented elsewhere.
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III. ALGORITHM

The algorithm we present is meant for stabilizing un-
stable orbits of a spatiotemporal process modeled by a
time series; a desired unstable orbit is maintained by ad-
justing an external system parameter. For Egs. (1a) and
(1b), the time series is measured at one spatial point in the
interior region. Control is achieved by appropriately
choosing fluctuations in the boundary conditions, intro-
duced as one integrates in time. In fact, it is sufficient to
use only one of the Dirichlet boundary conditions as an
accessible parameter, which we will refer to from now on
as our control parameter.

In order to maintain the system on the unstable state,
we measure a time series at x =x, namely v (xg,?). The
fixed space value is taken anywhere in the middle region
of the interval (approximately the middle third of the in-
terval) where the most severe bursting occurs. The sys-
tem is reaction dominated in this region.

One way to form a discrete dynamics of the time series
is sampling the variable v at successive minima. (Due to
the strong coupling between the variables » and v, con-
trol applied to the v variable leads to controlling the u
variable as well.) If we denote successive minima in the
time series for v (x,?) by v,, we obtain a map denoted by

[
vn+1=f(vn7p) ’ (2)

where p stands for the control parameter, which in our
case is one of the boundary conditions. An unstable orbit
of this map is then controlled by using any of the linear
control methods.

Control is extended in time as follows. At each iterate
of the map (2), the computed value of the solution v, is
used to determine the fluctuation 8p, in the parameter
according to a linear control method. The change in the
parameter will be proportional to the deviation from the
unstable state to be controlled. The new value of the pa-
rameter p, +08p, is fed back into the PDE solver. The
solution v, | at p, +8p, is obtained, and a new evalua-
tion of the fluctuation in the boundary condition then fol-
lows based on v, , and so on. Control of the unstable
orbit is thus extended in time.

To fix ideas, we assume from here on that the state we
are interested in is a period-1 fixed point v, of the map f;
i.e.,, vg=f(vg,p). Such a fixed point corresponds to a
period-1 time series at the spatial point x,.

As our linear control algorithm, we used the OGY
control method, which amounts to ensuring at each time
iteration that the next iterate of the map will fall on the
stable manifold of the unstable state we are controlling.
In the case of a two-dimensional map, if we denote by
Ag,A, the eigenvalues of the unstable state v, and by f,
the contravariant vector corresponding to the unstable
direction, then the above mentioned condition applied to
the linear approximation of the map yields that the con-
trol parameter p must be modified by

A'u[vn _VO(p)]'fu
(A, —lg-f, ~

ép, = 3)
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at each iteration of the map [3]. Notice that Eq. (3) de-
pends on the spatial point at which the time series is mea-
sured. The vector g is the derivative of the unstable state
vy with respect to p. In the case of weak diffusion, the
map is in fact nearly one dimensional at a spatial point.
This amounts to having A, =0, in which case the formula
becomes
San_—____)‘u[vn Yolp)] . 4)
(A,— g
Equation (4) is a traditional control method known as oc-
casional proportional feedback [10,11]. The eigenvalues
and eigenvectors involved in the formulas (2), (3), or (4)
associated with the saddle vy(p) can all be calculated
based on the reconstructed attractor.
Summarizing, our method achieves control of a spa-
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FIG. 1. (a) and (b) Time series for ¥ and v, respectively,
recorded at x =% and p = —2.0 in the absence of control.
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tiotemporal process as follows. After reconstructing a
discrete map from the data sampled at a fixed spatial
point, control is implemented by fluctuating the bound-
ary conditions proportional to the deviation from the
state we want to maintain. The method designed in this
way has the advantage in that it can be applied directly to
experimental data for which an analytical model is una-
vailable, and requires no mode expansion as in [12].

IV. NUMERICAL RESULTS

In our numerical tests we took in the model (la)
f(uw)=u?+u?, as in [7]. Before illustrating our scheme,
we examined the bifurcation of solutions by taking the
control parameter to be p=u(0,t). Let us take
D=0.032249 and a=0.01, values at which a stable
period one orbit exists for p between p =—0.5 and
p =—0.6. As pis decreased past —0.6 the period-1 orbit
becomes unstable and bifurcates into a period-2 orbit. At
about p = —1.15 the period two destabilizes, giving rise
to an intermittent bursting regime, which becomes chaot-
ic as we further decrease p past p =—1.6.

Figures 1(a) and 1(b) show the time series for the solu-
tion at x =5 and p = —2.0, without control. The time
series is chaotic and exhibits three distinct types of oscil-
lations. First there is a large amplitude burst, which
occurs on a fast reaction time scale. Following the burst,
there occurs an exponentially growing small amplitude
oscillation. This is followed by small amplitude chaotic
oscillations whose length is random in time.

For a time series of 14 000 points at x =, we compute
an information dimension of 2.1, having one positive
Lyapunov exponent [14]. Spectral analysis reveals that
most of the energy is contained in four spatial modes.
Note that time series sampled at other spatial points may
have no positive Lyapunov exponent. We have not found
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FIG. 2. v,+, vs v, at D=0.032249, a=0.01, and p = —2.
Large dots indicate the period-6 orbit at p = —1.4. Notice that
both parameter values of p obey nearly the same dynamics law.
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any other chaotic solutions having more than one posi-
tive Lyapunov exponent.

From the solution, we form a map for which the
iterates are the successive minima of the variable v. Fig-
ure 2 shows the successive minima of v when
D =0.032249, a=0.01, and p = —2.0, values of the pa-
rameters at which the solution exhibits chaos. Simultane-
ously, we display a stable period-6 solution in the inter-
mittent regime at D =0.032249, a=0.01, and p = —1.4.
From the picture we see that this orbit obeys nearly the
same nonlinear law as the chaotic attractor at p =—2.0.
Similar results of periodic bursting hold in the Belovsov-
Zhabotinsky (BZ) continuously stirred tank reactor [13].
The chaotic map in Fig. 2 is nearly one dimensional, jus-
tifying our use of the occasional proportional feedback in
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FIG. 3. (a) and (b) Time series for u and v, respectively,
recorded at x =% and p = — 1.4, when control is applied to the
corresponding time series at x = 1.
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our algorithm. Notice that the three oscillation types are
clearly evident in the one-dimensional attractor recon-
struction, the large bursts are near the peak of the map,
the exponentially growing solutions form the beginning
of the left branch, and the small amplitude chaos is
formed around the period-1 fixed point. Also notice that
at p = — 1.4, the period-1 fixed point is inaccessible, since
the stable period 6 is attracting.

Since control of period-1 orbits in chaotic attractors
has been done elsewhere [11], we now describe control of
inaccessible period-1 points. We consider a parameter
value p =—1.4, where a stable periodic intermittent
bursting solution exists. This orbit consists of a large
burst followed by five small growing oscillations and is
shown on the graph mapped in Fig. 2. We remark that at
p = — 1.4, the period-1 fixed point and its local neighbor-
hood are inaccessible. That is, the dynamics does not
enter a neighborhood of the period-1 fixed point, since
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FIG. 5. Time series for u, respectively recorded at x =% and
P =—1.4, when control is applied at x =1 for the first 200
iterates. Control is removed afterwards.
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FIG. 4. Spatiotemporal pattern when con-

. . . . 1
150.0 trol is applied to the time series at x = 3.

there is no chaos. For control to occur, we fluctuate the
parameter so that the dynamics enters the neighborhood
of the period-1 fixed point. We do this by looking at the
first preimage of a controllable neighborhood of the fixed
point in the bursting regime, on the right branch of the
map. The parameter is adjusted at the bursts so the dy-
namics enters a neighborhood of the period-1 fixed point,
at which point control is implemented.

We generate a time series by sampling at x =%. In or-
der to choose the reference value vy(p) at p =—1.4 in
formula (4), we notice that the orbit we want to control
has a fixed point that lies on the y =x line in Fig. 2. Be-
cause the dynamics at p = —1.4 is approximated by the
map at p =—2 (as shown in Fig. 2), we approximate
vo(—1.4) by vo(—2).

Figures 3(a) and 3(b) show the stabilized solution at
x =1, when the control is based on the solution sampled
at x =J. The amplitude of this solution agrees with the
amplitude of the stable solution at p =—0.5, where the
period-1 orbit is stable.

During control of the periodic solution, the amplitude
of the control at the boundaries is approximately 30% of
the signal at x =1. The control perturbations are larger
than in previous applications [4,5], since they must over-
come weak diffusion to be effective in the interior.

In Fig. 4 the whole stabilized spatiotemporal pattern is
shown. The period-1 solution in this example is indeed
unstable. To see this, in Fig. 5 we show the same time
series as in Fig. 3 where control was removed after 200
iterates. This results in the reappearance of the intermit-
tent pattern after a short delay. In this example, the time
series was sampled at x =1 and we started with an initial
condition that is constant and equals the boundary condi-
tions at x =0. The control parameters were not opti-
mized to minimize fluctuations about the period-1 refer-
ence state.

V. CONCLUSIONS

We have introduced and tested an algorithm that ap-
plies to stabilizing unstable states of spatiotemporal pro-
cesses occurring in reaction-diffusion processes. The no-
velty of this procedure consists in the fact that it applies
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to the time series directly, combining nonlinear analysis
embedding techniques with classical linear control. Com-
pared to similar techniques, it has the advantage that it
achieves control spatially as well as temporally. Since it
applies to the time series directly, the method is suitable
for experimentalists. Furthermore, by using the target-
ting of intervals in periodic regimes, previously inaccessi-
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ble control points are now achievable by making use of
the global nonlinear dynamics.
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FIG. 4. Spatiotemporal pattern when con-
trol is applied to the time series at x = 1.
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FIG. 5. Time series for u, respectively recorded at x = 3 and
p=—1.4, when control is applied at x =% for the first 200
iterates. Control is removed afterwards.



